Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Agata Białońska* and Zbigniew Ciunik

Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland

Correspondence e-mail:
bialonsk@wcheto.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.083$
$w R$ factor $=0.134$
Data-to-parameter ratio $=8.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Brucinium benzoate trihydrate

The title compound, $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ contains two brucinium-benzoate ion pairs and six water molecules in the asymmetric unit. In the crystal structure of (I), corrugated layers of brucinium cations, stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, are separated by anionic/water sheets. The cationic and the anionic/water layers are linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Many molecular or salt-like crystal structures containing the chiral alkaloid brucine $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$, a resolving agent used for the separation of racemic acids (Jacques et al., 1991), display corrugated layers of the alkaloid (CSD, Version 5.27 of November 2005; Allen, 2002). Such layers are present in the crystal structures of brucinium N-benzoyl-D-alaninate 4.5 hydrate (Gould \& Walkinshaw, 1984), brucinium N-benzoyl-Daspartate tetrahydrate, and brucinium N-benzoyl-D-asparaginate trihydrate (Białońska \& Ciunik, 2006), independent of the resolved species. We obtained crystals of the title compound, (I), to determine the effect of the benzoate anion on the brucinium cation self-assembly process.

There are two brucinium-benzoate ion pairs and six water molecules in the asymmetric unit of (I) (Fig. 1). The brucinium cations and bezoate anions are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds formed between the protonated amine N 2 and $\mathrm{N} 2 A$ atoms of the two brucinium cations and the O5 and O5A atoms of the deprotonated carboxylate groups of the anions. The carboxylate groups of the anions and the water molecules, O1 W-O6 W, form hydrogen-bonded sheets consisting of four-, seven- and nine-membered edge-sharing rings (Fig. 2 and Table 1).

The anionic/water sheets are separated by corrugated layers of brucinium cations (Fig. 3). As seen in other crystal structures in which brucinium cations form corrugated layers, in (I) the amide O 4 atom of the brucinium cation, located at the bottom of a groove in the surface of the corrugated layer, is

Received 30 October 2006
Accepted 13 November 2006
\qquad

Figure 1
The asymmetric unit of (I) with 30% probability displacement ellipsoids.

Figure 2
Part of the packing of (I), showing the benzoate anions and water molecules forming hydrogen-bonded (dashed lines) sheets. [Symmetry code: (iv) $x+\frac{1}{2}, \frac{3}{2}-y, 1-z$.]
the acceptor for an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, and the O 5 W water molecule is its donor (see Table 1). However, the amide atom $\mathrm{O} 4 A$ of the other brucinium cation, also located at a

Figure 3
The packing of (I). For clarity, H atoms have been omitted.
bottom of the grooves in the surface of the brucinium sheet, is involved in accepting a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond arising from a benzoate anion.

Experimental

The crystals of (I) were grown from ethanol solutions containing equimolar amounts of brucine and benzoic acid. The crystallization was performed at room temperature by slow evaporation of the solvent.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=570.62$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=12.479$ (2) \AA
$b=14.978$ (2) \AA
$c=29.272$ (3) \AA
$V=5471.2(13) \AA^{3}$

Data collection

Kuma KM4CCD diffractometer
ω scan
Absorption correction: none 34091 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.083$
$w R\left(F^{2}\right)=0.134$
$S=1.19$
5934 reflections
739 parameters

$$
Z=8
$$

$Z=8$
$D_{x}=1.385 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Plate, colourless
$0.30 \times 0.25 \times 0.10 \mathrm{~mm}$

5934 independent reflections
4492 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.109$
$\theta_{\text {max }}=26.0^{\circ}$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0431 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2 \cdots O5	0.93	1.80	2.693 (6)	160
$\mathrm{N} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} A$	0.93	1.68	2.595 (6)	168
$\mathrm{O} 1 W-\mathrm{H} 11 W \cdots \mathrm{O} 5^{\text {i }}$	0.88	1.88	2.748 (6)	169
$\mathrm{O} 1 W-\mathrm{H} 12 \mathrm{~W} \ldots \mathrm{O} 6 \mathrm{~W}$	0.88	1.98	2.857 (6)	176
$\mathrm{O} 2 W-\mathrm{H} 21 W \cdots \mathrm{O} 5 A^{\text {ii }}$	0.88	1.87	2.752 (6)	179
$\mathrm{O} 2 W-\mathrm{H} 22 W \cdots \mathrm{O} 1 W^{\text {iii }}$	0.88	1.88	2.764 (6)	179
$\mathrm{O} 3 W-\mathrm{H} 31 W \cdots \mathrm{O} 2 W$	0.88	1.98	2.864 (6)	179
$\mathrm{O} 3 W-\mathrm{H} 32 W \cdots \mathrm{O} 4 W$	0.88	1.94	2.822 (6)	179
$\mathrm{O} 4 W-\mathrm{H} 41 W \ldots \mathrm{O} 6$	0.88	1.92	2.784 (6)	165
$\mathrm{O} 4 W-\mathrm{H} 42 W \cdots \mathrm{O} 6 A^{\text {iv }}$	0.88	1.93	2.813 (6)	179
$\mathrm{O} 5 W-\mathrm{H} 51 W \cdots \mathrm{O} 4^{\text {v }}$	0.88	2.19	2.915 (6)	140
O5W-H52W ...O6W	0.88	1.99	2.872 (6)	178
$\mathrm{O} 6 W-\mathrm{H} 61 W \cdots \mathrm{O} 6 A^{\text {iv }}$	0.88	1.93	2.798 (6)	168
O6 W-H62W . . O6	0.88	1.83	2.707 (6)	179
$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O} 4 A^{\text {vi }}$	0.95	2.48	3.118 (7)	125

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$; (iii) $x-1, y, z$; (iv) $x+\frac{1}{2},-y+\frac{3}{2},-z+1$; (v) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (vi) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.

Anomalous diffraction effects were very small and Friedel pairs were merged before the final refinement. The absolute configuration of (I) was chosen on the basis of the known absolute configuration of brucine (Toda et al., 1985). The C-bound H atoms were placed in idealized locations $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA)$ and refined as riding with
$U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The remaining H atoms were located in difference maps, repositioned in idealized locations $(\mathrm{N}-\mathrm{H}=0.93, \mathrm{O}-\mathrm{H}=0.88 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier).

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis RED (Oxford Diffraction, 2001); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker 1999); software used to prepare material for publication: SHELXL97.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Białońska, A. \& Ciunik, Z. (2006). Cryst. Eng. Comm. 8, 66-74.
Bruker (1999). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Gould, R. O. \& Walkinshaw, M. D. (1984). J. Am. Chem. Soc. 106, 78407842.

Jacques, J., Collet, A. \& Wilen, S. H. (1991). Enantiomers, Racemates and Resolutions. Malabar, Florida: Krieger Publishing Company.
Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction (Poland), Wrocław, Poland.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Unversity of Göttingen, Germany.
Toda, F., Tanaka, K., Ueda, H. \& Oshima, T. (1985). Isr. J. Chem. 25, 338-345.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

